Porphyrin Cobalt(III) "Nitrene Radical" Reactivity; Hydrogen Atom Transfer from Ortho-YH Substituents to the Nitrene Moiety of Cobalt-Bound Aryl Nitrene Intermediates (Y = O, NH).

نویسندگان

  • Monalisa Goswami
  • Christophe Rebreyend
  • Bas de Bruin
چکیده

In the field of cobalt(II) porphyrin-catalyzed metallo-radical reactions, organic azides have emerged as successful nitrene transfer reagents. In the pursuit of employing ortho-YH substituted (Y = O, NH) aryl azides in Co(II) porphyrin-catalyzed nitrene transfer reactions, unexpected hydrogen atom transfer (HAT) from the OH or NH₂ group in the ortho-position to the nitrene moiety of the key radical-intermediate was observed. This leads to formation of reactive ortho-iminoquinonoid (Y = O) and phenylene diimine (Y = NH) species. These intermediates convert to subsequent products in non-catalyzed reactions, as is typical for these free organic compounds. As such, the observed reactions prevent the anticipated cobalt-mediated catalytic radical-type coupling of the nitrene radical intermediates to alkynes or alkenes. Nonetheless, the observed reactions provide valuable insights into the reactivity of transition metal nitrene-radical intermediates, and give access to ortho-iminoquinonoid and phenylene diimine intermediates from ortho-YH substituted aryl azides in a catalytic manner. The latter can be employed as intermediates in one-pot catalytic transformations. From the ortho-hydroxy aryl azide substrates both phenoxizinones and benzoxazines could be synthesized in high yields. From the ortho-amino aryl azide substrates azabenzene compounds were obtained as the main products. Computational studies support these observations, and reveal that HAT from the neighboring OH and NH₂ moiety to the nitrene radical moiety has a low energy barrier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrene Radical Intermediates in Catalytic Synthesis

Nitrene radical complexes are reactive intermediates with discrete spin density at the nitrogen-atom of the nitrene moiety. These species have become important intermediates for organic synthesis, being invoked in a broad range of C-H functionalization and aziridination reactions. Nitrene radical complexes have intriguing electronic structures, and are best described as one-electron reduced Fis...

متن کامل

Cobalt‐Porphyrin‐Catalysed Intramolecular Ring‐Closing C−H Amination of Aliphatic Azides: A Nitrene‐Radical Approach to Saturated Heterocycles

Cobalt-porphyrin-catalysed intramolecular ring-closing C-H bond amination enables direct synthesis of various N-heterocycles from aliphatic azides. Pyrrolidines, oxazolidines, imidazolidines, isoindolines and tetrahydroisoquinoline can be obtained in good to excellent yields in a single reaction step with an air- and moisture-stable catalyst. Kinetic studies of the reaction in combination with ...

متن کامل

Evidence of two-state reactivity in alkane hydroxylation by Lewis-acid bound copper-nitrene complexes.

The behavior of the Lewis-acid adducts of two copper-nitrene [Cu(NR)](+) complexes in nitrene-transfer and H-atom abstraction reactions have been demonstrated to depend on the nature of the nitrene substituents. Two-state reactivity, in which a singlet ground state and a nearby triplet excited-state both contribute, provides a useful model for interpreting reactivity trends of the two compounds.

متن کامل

Ruthenium porphyrin catalyzed diimination of indoles with aryl azides as the nitrene source.

By using [Ru(TTP)CO] [H2TTP = meso-tetrakis(4-tolyl)porphyrin] as catalyst and aryl azides as the nitrene source, the sp(2)(C-H) bonds of a series of indoles undergo oxidative C-N bond formation to give unique 2,3-diimination products in good to high yields.

متن کامل

Catalytic N-N coupling of aryl azides to yield azoarenes via trigonal bipyramid iron-nitrene intermediates.

The reactivity of the trigonal bipyramidal iron(I) complex [SiP(iPr)(3)]Fe(N(2)) ([SiP(iPr)(3)] = (2-iPr(2)PC(6)H(4))(3)Si(-)) toward organoazides has been examined. 1-Adamantylazide was found to coordinate the iron center to form stable [SiP(iPr)(3)]Fe(eta(1)-N(3)Ad). Aryl azides instead afforded unstable [SiP(iPr)(3)]Fe(N(3)Ar) species that decayed gradually to regenerate [SiP(iPr)(3)]Fe(N(2)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2016